Real-time Software Telemetry Processing
System (RT-STPS) Version 4.1

General

The NASA Goddard Space Flight Center's (GSFC) Direct Readout Laboratory (DRL),
Code 606.3 developed the Real-time Software Telemetry Processing System (RT-
STPS) software for the National Polar-orbiting Operational Environmental Satellite
System (NPOESS) Preparatory Project (NPP) In-Situ Ground System (NISGS) and the
International Polar Orbiter Processing Package (IPOPP).

Users must agree to all terms and conditions in the Software Usage Agreement on the
DRL Web Portal before downloading this software.

Software and documentation published on the DRL Web Portal may occasionally be
updated or modified. The most current versions of DRL software are available at the
DRL Web Portal:

http://www.directreadout.gsfc.nasa.gov

Questions relating to the contents or status of this software and its documentation
should be addressed to the DRL via the Contact Us mechanism at the DRL Web Portal:

http://directreadout.gsfc.nasa.gov/index.cfm?section=contact%20usAlgorithm

Software Description

The RT-STPS Server and RT-STPS Batch Processor Java applications ingest raw
telemetry data and produce Level 0 products, including sorted Consultative Committee
for Space Data Systems (CCSDS) packets and Virtual Channel Data Units (VCDUSs).

The RT-STPS Batch Processor ingests a single data file as specified in the
configuration file. The RTSTPS Server runs continuously. The RT-STPS Server and
Batch Processor can each send data across Transmission Control Protocol
(TCP)/Internet Protocol (IP) ports, to files, or to both simultaneously, depending on the
configuration file.

The RT-STPS package includes three utilities: the Viewer, the Server, and the Sender.
The RT-STPS Viewer displays the progress of the RT-STPS Server as it runs, and
loads and unloads the Server configuration files. The RT-STPS Sender copies a raw
data file to the RT-STPS Server. The Rat is a rate buffer utility described further in
Appendix C, "RT-STPS Tools."

RT-STPS Version 4.1 Page 1 November 2007

http://www.directreadout.gsfc.nasa.gov/
http://directreadout.gsfc.nasa.gov/index.cfm?section=contact%20usAlgorithm

The RT-STPS architecture is depicted in the following diagram. The components are
further explained in Appendix A, "RT-STPS XML Configuration Files." For a more
detailed description of RT-STPS and other DRL technologies, go to:

http://directreadout.gsfc.nasa.gov/index.cfm?section=technology

Raw

Telemetry Frames CADUs VCDUs B PDUs Packets

Core

Acquisition Frame | RS/ICRC/PN | CCSDs
(TCP or File) Synchronizer Decoders Services

Remote User Interfaces Status Setup Status

RT-STPS Architecture

Software Version

This software package contains RT-STPS Version 4.1. Version 4.1 addresses minor
issues associated with some of the arguments in the scripts files, and updates the
version string to the proper release number. Version 4.1 has been tested with RS
interleaves of 1, 4 and 5.

Prerequisites

To run this package, you must have the Java Development Kit (JDK) or Java Runtime
Engine (JRE) (Java 1.5 or higher) installed on your computer. If you plan to rebuild the
RT-STPS distribution, you must install the JDK. Otherwise, only the Java Runtime
Environment (JRE) must be installed. Ensure that Java applications can be executed.

RT-STPS Version 4.1 Page 2 November 2007

http://directreadout.gsfc.nasa.gov/index.cfm?section=technology

Program Inputs and Outputs

RT-STPS inputs are raw telemetry data and XML configuration files. (Configuration file
examples are described in Appendix B.) RT-STPS outputs Level 0 products including
sorted CCSDS packets and VCDUs.

Installation and Configuration

RT-STPS can be installed on Linux or Microsoft Windows platforms. Installation
instructions for each platform are provided in separate sections, "Linux Platform
Installation" and "Windows Platform Installation." Operating instructions for both
platforms are contained in the "Program Operation" section.

Linux Platform Installation

NOTE: The bin directory of the JRE (or JDK) must be added to the beginning of the
PATH environment variable so that the 'java' executable can be executed (and the
'javac' and 'javadoc' executables, if you plan to rebuild). Placing the bin directory at the
beginning of the PATH environment variable prevents use of another Java distribution
(such as the Java that ships with some operating systems).

Copy the RT-STPS distribution to the desired location. The "rt-stps-<version>.tar.gz"
file (where <version> is the version number) contains, at the top level, a directory
named "rt-stps”. In the desired directory (typically "drl"), copy "rt-stps-<version>.tar.gz"
and enter:

tar xzf rt-stps-<version>.tar.gz

This will create the "rt-stps" directory in that directory. All directory paths referred to in
these instructions are relative to the "rt-stps" directory.

Configure RT-STPS

Configure the RT-STPS Server by editing the Extensible Mark-up Language (XML)
configuration files in the "./configs" directory. Instructions for editing the configuration
files and the XML definitions are provided in Appendix A.

NOTE: |If a previous version of RT-STPS was installed on your computer, we
recommend that you update the configuration files so that they contain the default
parameters for Version 4.1.

Configure the Java Service Wrapper

The RT-STPS Server is run as a service using the Java Service Wrapper (JSW), which
is configured in "./jsw/conf/rt-stps-server.conf". The lines defining
"wrapper.java.additional.1", wrapper.java.additional.2", etc., specify the RT-STPS
Server parameters as described in Appendix B. The default values should work in most
cases. If the default values need to be modified, the "wrapper.java.additional.x" lines
must start with "x" as "1" and increase with no gaps.

RT-STPS Version 4.1 Page 3 November 2007

In the "./jsw/bin" directory, there should be a soft logical link from "wrapper" to "wrapper-
32" for a 32-bit operating system and Java. If a 64-bit operating system and Java are
being used, while in the "./jsw/bin" directory, delete "wrapper" and set the soft logical
link using "In -s wrapper-64 wrapper".

Likewise, in the "./jsw/lib" directory there should be a soft logical link from
"libwrapper.so” to "libwrapper-32.so0" (for a 32-bit operating system and Java). If a 64-
bit operating system and Java are being used, while in the "./jsw/lib" directory delete
"libwrapper.so" and set the soft logical link using "In -s libwrapper-64.so libwrapper.so".

NOTE: "wrapper" is a symbolic link to either "wrapper-32" or "wrapper-64". They
should be marked as executable, and the symbolic link created to the appropriate file,
depending on your architecture. If you are trying to run rt-stps and get a "link" error,
check that the link is set up properly and that the files are set to executable. For
example:

[nisgs@nisfes bin]$ Is -l

total 212

-rwx--x--X 1 nisgs nisgs 14370 Sep 5 22:52 rt-stps-server.sh
[rwxrwxrwx 1 nisgs nisgs 10 Sep 5 23:43 wrapper -> wrapper-32
-rwx--X--X 1 nisgs nisgs 89171 Sep 5 22:52 wrapper-32
-rwx--Xx--X 1 nisgs nisgs 101769 Sep 5 22:52 wrapper-64

Start the RT-STPS Server Automatically at Boot

The RT-STPS Server can be started at boot. In /etc/rc.local add:
Su - <user> -c "<path>/jsw/bin/rt-stps-server.sh start"

where <user> is the user the RT-STPS Server will run as, and <path> is the absolute
path of the "rt-stps" directory. Do not run the RT-STPS Server as "root".

Start the RT-STPS Server Manually
The RT-STPS Server can be started, restarted, or stopped at any time from a shell by
entering :

"<path>/jsw/bin/rt-stps-server.sh <cmd>"

where <path> is the absolute path of the "rt-stps" directory, and <cmd> is <start>,
<restart>, or <stop>. This must be done as the same user that originally started the RT-
STPS Server.

Troubleshooting

Log files for the JSW are in "./jsw/logs". They should be examined if the RT-STPS
Server does not appear to be running.

RT-STPS Version 4.1 Page 4 November 2007

Rebuilding
If you find it necessary to rebuild the RT-STPS distribution, use:

/build.sh
to compile the Java source files and create the "rt-stps.jar" file in the "lib" directory.

NOTE: The build.bat file calls the Java Remote Method Invocation Compiler (RMIC)
"rmic.exe" program to build the remote method invocation portion of RT-STPS. The
GNU version of RMIC cannot be used with the RT-STPS buildscript.

Ensure that the Java rmic.exe program is before the GNU RMIC program in the system
PATH, so the build.bat file will execute properly. Alternatively, edit the build.bat file and
hard code the absolute path to Java rmic.exe.

Create Launchers

You may create desktop launchers to run the RT-STPS Viewer and RT-STPS Sender.
The creation of launchers varies between the different types of Linux and their desktop
environments. In all cases the command lines described in "Execute the RT-STPS
Viewer" and "Execute the RT-STPS Sender" will apply.

Execute the RT-STPS Viewer

Double-click the RT-STPS Viewer launcher. Or, if a launcher is not being used, while in
the "rt-stps" directory, enter":

bin/viewer.sh

The RT-STPS Viewer can then be used to view the progress of the RT-STPS Server as
it runs, as well as to load and unload configuration files. Additional instructions
explaining the use of the RT-STPS Viewer are contained in the "Program Operation"
section of this document.

Execute the RT-STPS Sender

Double-click the RT-STPS Sender launcher. Or, if a launcher is not being used, while in
the "rt-stps" directory, enter:

/bin/sender.sh
The RT-STPS Sender can then be used to send a raw data file to the RT-STPS Server.
Additional instructions explaining the use of the RT-STPS Sender are contained in the

"Program Operation" section of this document. Other ways to control the RT-STPS
Server are described in Appendix B.

RT-STPS Version 4.1 Page 5 November 2007

Batch Command

A batch command lets you run RT-STPS as a standalone, one-time program. You run it
with a configuration file and an input data file containing telemetry, and it produces
whatever output is specified in the configuration. At the command line, type:

bin/batch.sh <configurationFileName> <dataFileName>

Windows Platform Installation

NOTE: The ‘java’' executable will have been installed in "C:\WINDOW S\system32" on
XP systems. If a different 'java' executable is to be used, the "bin" directory of its JRE
(or JDK) must be added to the beginning of the PATH environment variable (i.e., before
"C:\WINDOWS\system32"). If you plan to rebuild the RT-STPS distribution, the "bin"
directory of the JDK must be added to the beginning to the PATH environment variable
so that the 'javac' and 'javadoc' executables can be executed.

Copy the RT-STPS distribution to the desired location.

The "rt-stps-<version>.zip" file (where <version> is the version number) contains, at the
top level, a directory named "rt-stps". Extract/copy the "rt-stps" directory to the desired
location (typically a directory named "drl" in "C:\Program Files"). All directory paths
referred to in these instructions are relative to the "rt-stps" directory.

Java Setup and Performance Notes

Many of the scripts (batch files) in the RT-STPS "bin" directory employ the "-server"
option to increase performance, as the Sun Java Virtual Machine (JVM) Server is said
to be somewhat faster than the "client" JVM. By default the JRE comes with the client
JVM only, and to use the Server JVM, you must install the JDK. Once the JDK is
installed, either copy the server directory from "jdk/jre/bin" to the "jre/bin" directory, or
adjust the PATH under Windows to place the "jdk/bin" directory on the path instead of
the jre.

If the "-server" option is used in a batch file and the Server JVM is not properly installed,
Windows will issue an error message as follows:

Error: no 'server' JVM at "...\jreX.X.X\bin\server\jvm.dlI"

If the JDK is installed, set the PATH so that the "jdk/bin" is employed instead of the
"jre/bin" directory in the environment variables under Windows. For example:
JAVA_HOME C:\java\jdk1.5.0_03

And then:

PATH %JAVA_HOME%\bin

The 'java' executable will have been installed in "C:\WINDOWS\system32" on XP

RT-STPS Version 4.1 Page 6 November 2007

systems. If a different 'java’ executable is to be used, the "bin" directory of its JRE (or
JDK) must be added to the beginning of the PATH environment variable (i.e., before
"C:\WINDOWS\system32"). If you plan to rebuild the RT-STPS distribution, the "bin"
directory of the JDK must be added to the beginning to the PATH environment variable
so that the 'javac' and 'javadoc' executables can be executed.

Configure RT-STPS

Configure the RT-STPS Server by editing the Extensible Mark-up Language (XML)
configuration files in the "./config" directory. The XML elements found in each file are
defined in Appendix A.

Configure the Java Service Wrapper

The RT-STPS Server is run as a Windows service using the Java Service Wrapper
(JSW), which is configured in ".\jsw-Windows\conf\rt-stps-server.conf'. The lines
defining "wrapper.java.additional.1", "wrapper.java.additional.2", etc. are used to specify
the RT-STPS Server parameters as described in "rt-stps.txt". The default values should
work in most cases. If the default values need to be modified, the

"wrapper.java.additional.x" lines must start with "x" as "1" and increase with no gaps.

Install the RT-STPS Server as a Windows Service

In the ".\jsw-Windows\bin" directory, double-click "Install-NT.bat". This will install the
RT-STPS Server to be started automatically when Windows boots. To modify how the
RT-STPS Server is installed, use the "Services" windows found at "Control Panel >
Administrative Tools > Services". It will now contain a service named "RT-STPS
Server". Using the "Service" window, the RT-STPS Server can be started/stopped.
Whether or not the RT-STPS Server automatically starts at boot can also be specified.
To uninstall the RT-STPS Server, first stop the RT-STPS Server and then double-click
"Uninstall-NT.bat" in the ".\jsw-Windows\bin" directory.

Troubleshooting

Log files for the Java Service Wrapper are in ".\jsw-Windows\logs". They should be
examined if the RT-STPS Server does not appear to be running.

Rebuilding
If you find it necessary to rebuild the RT-STPS distribution, use:

\build.bat
to compile the Java source files and create the "rt-stps.jar" file in the "lib" directory.

NOTE: The build.bat file calls the Java Remote Method Invocation Compiler (RMIC)
"rmic.exe" program to build the remote method invocation portion of RT-STPS.
However, if Cygwin is installed on your system, the distribution may include a program
of the same name. The Cygwin version of RMIC cannot be used with the RT-STPS
buildscript.

RT-STPS Version 4.1 Page 7 November 2007

Ensure that the Java rmic.exe program is before the Cygwin rmic program in the system
PATH, so the build.bat file will execute properly. Alternatively, edit the build.bat file and
hard code the absolute path to Java rmic.exe.

Creating Shortcuts

You can create a shortcut to the RT-STPS Viewer as follows:

a) In the "\bin" directory, right-click the "viewer.bat" file and select "Create
Shortcut".

b) Move the shortcut to the desired location (e.g., the Desktop).
c) Rename the shortcut "RT-STPS Viewer".

d) Right-click the shortcut and select "Properties”. Modify the "Start in:" field to be
the absolute path of the "rt-stps" directory. Change the "Run:" selection to
"Minimized".

You can create a shortcut to the RT-STPS Sender as follows:
a) In the "\bin" directory, right-click the "viewer.bat" file and select "Create
Shortcut".
b) Move the shortcut to the desired location (e.g., the Desktop).

c) Rename the shortcut "RT-STPS Viewer".

d) Right-click the shortcut and select "Properties”. Modify the "Start in:" field to be
the absolute path of the "rt-stps" directory. Change the "Run:" selection to
"Minimized".

Execute the RT-STPS Viewer
If you are using a shortcut, double-click the RT-STPS Viewer shortcut. Otherwise, while
in the "rt-stps" directory, enter:

Abin\viewer.bat

The RT-STPS Viewer can then be used to view the progress of the RT-STPS Server

as it runs and to load and unload configuration files. Additional instructions explaining
the use of the RT-STPS Viewer are contained in the "Program Operation" section of this
document.

RT-STPS Version 4.1 Page 8 November 2007

Execute the RT-STPS Sender

If you are using a shortcut, double-click the RT-STPS Sender shortcut. Otherwise,
while in the "rt-stps" directory, enter:

Abin\sender.bat
The RT-STPS Sender can then be used to send a raw data file to the RT-STPS Server.

Additional instructions explaining the use of the RT-STPS Sender are contained in the
"Program Operation" section of this document. Other ways to control the RT-STPS
Server are described in Appendix B.

Batch Command

A batch command lets you run RT-STPS as a standalone, one-time program. You run it
with a configuration file and an input data file containing telemetry, and it produces
whatever output is specified in the configuration. At the command line, type:

\bin\batch.bat <configurationFileName> <dataFileName>

Program Operation

NOTE: The "Program Operation" section includes instructions for both Linux and
Windows platforms.

The Batch Processor and Server each require a setup file. Typically, you load a setup
prior to each pass, although the Server does have an auto-load feature, which is
explained later in this document. Setup files and some sample setup files are stored in
the "config" directory.

The data directory is the default target for output files, typically "../data" (Linux) or
".\data" (Windows). A sample raw telemetry file named "terracotta.dat" resides in these
directories. It contains one virtual channel and one Application ID (APID) of Terra
MODIS data (apid 64).

Note that server.sh, viewer.sh, and sender.sh do not exit immediately and therefore
should be started in background, or in separate terminal windows, when executing from
the command line.

RT-STPS Server

Before attempting to start the Server, ensure that "drl/rt-stps" is the current directory.
To run a quick test, first start the Server by running:

Linux: ./bin/server.sh
Windows: .\bin\server.bat

When ready, it prints "Ready to serve".

RT-STPS Version 4.1 Page 9 November 2007

RT-STPS Viewer
Next, run:

Linux: ./bin/viewer.sh
Windows: .\bin\viewer.bat

This opens the RT-STPS Viewer, depicted below, which can be used to view the
progress of the RT-STPS Server as it runs, as well as to load and unload configuration
files.

B @@ —wsiesvewer

File Commands 5Status

u |

Go Unload fero Exit

Frames Frames

Mode search CRC Error Frames
Lost 5ync Count FE5 Corrected Frames
Flanhieels 5 Uncorrectables
Lock Frames Deleted Frames
Fihawheels Cutput Pazsed Frames

Lo RN o I o T o Y S o N o
DD D D D D D D

Slipped Frames CaDUs
True Frames Unrouteakhle CaADls
Imverted Frames Fill CADLUs
Terra MODIS 2007/303/17:26:51
o Loaded Go: 2007 /303 /145%06 Stop: 2007 /303,/15:03:32 _,ian Data

RT-STPS Viewer

Click on the "load" button, and choose "terracotta.xml" from the "config" subdirectory.
This loads the Server with a Terra setup file. It will capture MODIS packets and store
them in an Earth Observing System (EOS) Production Data Set (PDS) file in the data
subdirectory. Press the "go" button, and the RT-STPS Server is ready.

NOTE: If you have a firewall, then you may not be able to run the Viewer, and you may
have difficulties with other tools, unless you turn off, or make accommodations to go
through, the firewall. The Server accepts data by default on port 4935. The output port
numbers, if any, are defined in the setup files. The viewer talks to the Server using the
Java RMI protocol. It initially connects through port 1099, but afterwards they talk
through anonymous ports, so you may not be able to get the Viewer to work through a
firewall.

RT-STPS Viewer Function Summary
The RT-STPS Viewer functions are used to configure the RT-STPS Server and

RT-STPS Version 4.1 Page 10 November 2007

examine its status.

Menu Bar
The Menu Bar contains the File, Commands, and Status pull-down menus.

File Menu
The File Menu contains the program Exit item.

Commands Menu

The Commands Menu contains the following commands to configure and run the
RT-STPS Server:

a) Local Load. Displays a Dialog Box to select and load a configuration file
stored on the computer executing the Viewer.

b) Remote Load. Displays a Dialog Box to select and load a configuration file
stored on the computer executing the RT-STPS Server.

c) Go. Starts RT-STPS Server data processing.
d) Stop. Halts RT-STPS Server data processing.
e) Unload. Removes the current configuration from the RT-STPS Server.

f) Zero Status. Resets the statistics display.

Status Menu

The Status Menu contains menu items to display Path Service Status, Packet
Status, the Virtual Channel Status Table, and the Packet Status Table.

Button Bar
Contains buttons linked to the Commands Menu Items (see above).

RT-STPS Sender

This software package also includes the RT-STPS Sender, depicted below, which can
be used to send a raw data file to the RT-STPS Server.

RT-STPS Version 4.1 Page 11 November 2007

Target Host: [Jocalhost |

Target Port: (4935 |

Delay between sends: |C| | ms

Eile: | terracottadat |

[

RT-STPS Sender
Run:

Linux: ./bin/sender.sh
Windows: .\bin\sender.bat

The host should be "localhost", and the port number should be 4935. Leave the delay
as zero. Click on the "File" box. Select the "data" subdirectory, then select the
"terracotta.dat" file, and press "go" to send. You can watch the Server in the Viewer
window. When the Sender finishes, the Server should automatically shut itself down.
(Sender.sh simply sends file data to a port and host. It is not specifically written for the
RT-STPS Server, so you might find it useful in other applications.) The output PDS files
will appear in the data subdirectory.

Rat

Rat is a rate-buffering program that can spool data to a slow target. It may be useful
when you load a configuration into the Server that sends data units to a remote target
directly through a TCP/IP socket. A slow target will slow down the server too, and it
may cause overruns in a real-time environment. You can run Rat on the same
computer as the Server, or you can run it at a remote location. Rat.sh requires three
arguments when it is invoked:

Linux: ./bin/rat.sh <inputPort> <targetHost> <targetPort>
Windows: .\bin\rat.sh <inputPort> <targetHost> <targetPort>

For additional information on Rat, refer to Appendix C.

RT-STPS Version 4.1 Page 12 November 2007

Appendix A
RT-STPS XML Configuration Files

An RT-STPS configuration file defines the data pathways through the RT-STPS.
(Configuration file examples are described in Appendix B.) The RT-STPS is a collection
of connected nodes, and the configuration file defines each node’s setup and how the
nodes are linked together. Nodes pass data among themselves as either packets,
frames, or units. A packet is a CCSDS Version 1 packet. A frame is a higher level
container with a synchronization pattern and often Cyclic Redundancy Check (CRC) or
Reed Solomon parity attached to the end. A CCSDS Channel Access Data Unit (CADU)
is a type of frame. A unit is anything else including CCSDS Virtual Channel Data Units
(VCDUs) and bitstream Bridge Protocol Data Units (BPDUs). Each node will generally
accept at most one type of data unit, and most nodes will send one type of data unit.

An RT-STPS configuration file is XML-compliant, and you can see the general layout in
the Document Type Definition (DTD) file, "rt-stps.dtd". Each element usually
corresponds to one node with one exception. The standard Pseudo-noise (PN) decoder
node is embedded in the frame synchronization element. The file format is complex, so
it is best if you copy an existing file and change it to suit your needs.

Each RT-STPS configuration must begin with a frame synchronization node, but almost
every node after that is optional. Most configurations will contain more than one internal
stream. A typical full configuration path is as follows:

e The Frame Synchronizer receives blocks of bits. It finds frames and sends them
to linked nodes. This is the only node that does not accept frames, packets, or
units. It also attaches a time tag and quality information to each frame, to which
subsequent frame handlers contribute.

e The PN Decoder receives frames and removes pseudo-noise from them. It
sends the new frames to linked nodes.

e The CRC Decoder checks for CRC errors in each frame. It can discard bad
frames. It sends frames to the next nodes.

e The Reed Solomon Decoder check for block RS errors in each frame. It can
attempt to correct errors, and it can discard bad frames. It sends frames to the
next nodes.

e The Frame Status node collects status information about frames, which it
accumulates in counters. It is particularly useful if you are using the RT-STPS
viewer to monitor session activity. Without it, most of the frame counters would
remain zero. It gets most of its information from the frame quality. This node
forwards the frames without modification.

RT-STPS Version 4.1 Page A-1 November 2007

The Terra Decoder is a non-CCSDS-compliant PN decoder especially designed
to handle a Terra spacecraft requirement. It accepts only Terra CADU frames
and sends frames (CADUs).

The CADU Service node accepts only CADU frames. It splits the single input
stream into one or more independent streams based upon the spacecraft ID and
Virtual Channel ID (VCID) that it finds in each CADU. You must configure this
node so that spacecraft IDs and virtual channel IDs map to other nodes. It will
discard any frame that has an unrecognizable mapping. You may link one
"spid/vcid" combination to more than one node, or you may map more than one
"spid/vcid" to a single node. Usually you map to CCSDS service nodes, but you
could map a stream directly to an output device node.

The Path Service node accepts CADU frames from one virtual channel, which it
deconstructs and assembles into CCSDS packets. Usually you link one or more
Path Service nodes to the CADU Service node. The Path Service node splits its
input stream into one or more packet output streams based upon the packet’s
application ID. You must configure this node so that the packet application 1D
maps to other nodes. It will discard any packet that has an unrecognizable
mapping. As with the CADU Service node, you may map multiple "appids" to
one node or one "appid" to multiple output nodes. Usually you map the Path
Service node to Packet nodes, but you could map it directly to output device
nodes.

The VCDU node is another node that you typically link to the CADU Service
node. It accepts frames/CADUs. It removes header and trailer information and
sends the resulting VCDUs or CVCDUs to one or more listening nodes. The
receiving nodes must accept units.

The Bitstream node is another node that you typically link to the CADU Service
node. It accepts frames/CADUs. It extracts BPDUs and sends them to listening
nodes, which must accept units.

The Packets element is not a node itself but a container that lists Packet nodes.
Each Packet node accepts CCSDS packets. Since each node performs packet
sequence checking, it expects the packets to come from one packet stream,
which is usually one application ID. It sends packets to packet listener nodes.

There are several kinds of output device nodes, which send packets, frames, or units to
either files or TCP/IP sockets. Each output device node will usually only accept data
units of a particular type. You may attach an output device node of the correct type to
any node that listed above. Output device nodes do not send data units to other nodes,
so you cannot link them as you do other nodes. The "output_channels" element defines
all output device nodes in a configuration file.

The file, socket, and null output channels send annotated or non-annotated data units to

RT-STPS Version 4.1 Page A-2 November 2007

the device. The null device is a discard channel. Annotation is quality and time, and
you may optionally append or prefix it to each data unit. The "sorcerer" output channel
creates EOS Terra or Aqua spacecraft Production Data Set (PDS) and Expedited Data
Set (EDS) files. PDS and EOS Data Sets each include a Construction Record and one
or more packet files containing un-annotated packets. If you choose an annotation
option, then the RT-STPS writes 64 bits of frame annotation with each frame, packet, or
unit. In the packet case, it also writes 32 bits of packet annotation before the frame
annotation.

Bits Packet Annotation (32 bits) Precedes Frame Annotation

31-18 | Not used (most significant bit)

17 1= packet has invalid length, which is outside the configured minimum
and maximum packet length for this packet stream.

16 1= this packet could not be constructed in its entirety, and so it has

appended fill data.

15-0 The number of "good" bytes in this packet. For complete packets, it is
the packet length. For packets with fill, it is the index of the first fill byte.

Bits Frame Annotation (2 x 32 bits)

31-26 | Not used (most significant bit)

25 1= Frame contains an idleffill VCDU (CCSDS state).

24 1= Frame has bad first header pointer (CCSDS error).

23 1= Path Service had problem composing a packet from this frame.
22 1= sequence error between this frame and preceding frame

21 1= Frame is Reed Solomon uncorrectable.

20 1= Frame is Reed Solomon corrected.

19 1= Frame has CRC error.

18 1= Slipped frame (Frame was aligned.)

17 1= Inverted frame (Polarity was corrected.)

16 1= Lock frame

15-0 Day of year (1-366)

31-0 Milliseconds of day

The contents of every RT-STPS configuration file must be contained between the
statements <rt_stps id="title"> and </rt_stps>. You should substitute a short description
for the title field. The RT-STPS Viewer will display it on the status line when it loads the
configuration.

RT-STPS Version 4.1 Page A-3 November 2007

The Frame Synchronizer Node

The element name and link name is "frame_sync". Exactly one "frame_sync" node
must appear in every configuration. This node creates frames from unsynchronized
bits.

Field Default Description

pattern O0x1ACFFC1D The frame synchronization pattern. The
default is the CCSDS standard, and you
should not change it unless you must
process non-CCSDS telemetry. The
number of characters in the pattern
determines the pattern length. It must be
at least two bytes long.

frameLength 1024 The frame length in bytes. If the frames
contain Reed Solomon parity, then you
must specify a frame length that satisfies
the Reed Solomon decoder. 1024 is the
required frame length for RS interleave 4
frames. If you have interleave 5 frames,
use 1264. Interleave 1 frames are 256
bytes.

slip 0 If 1 or 2 and if the Frame Synchronizer
does not see the pattern at its current
anchor position, it will look forwards and
backwards 1 or 2 bits to see if the frame
has "slipped." If it finds sync, it will reset
its anchor. This field is only meaningful if
the Frame Synchronizer is in lock and it
suddenly drops sync because of a slip.
Setting this field should have little effect on
performance, and there is no harm in
setting it. In practice, frames are rarely
slipped. The field must have a value of O,
1, or 2.

trueSync true If true, the Frame Synchronizer searches
for the pattern exactly as specified. There
is no reason to set this field to false unless
you are certain that the frames will have
inverted sync, in which case you will save
some processing time. |If false, then you
must set invertedSync to true.

invertedSync false If true, the Frame Synchronizer will search
for an inverted sync pattern. When it
detects an inverted pattern, it assumes
that the entire frame is inverted. If false,
then you must set trueSync to true.

RT-STPS Version 4.1 Page A-4 November 2007

Field Default Description

correctPolarity true If true, the Frame Synchronizer will correct
the polarity of frames that it determines
have an inverted sync pattern. It inverts
the entire frame and not just the pattern.
This field is meaningless unless
invertedSync is true. This field must be
true if it detects inverted frames and you
subsequently route them to the Reed
Solomon decoder or to any CCSDS
processing nodes. The only time you
might do otherwise is if you send frames
directly from the Frame Synchronizer to an
output channel.

flywheelDuration | 0 This field affects how the Frame
Synchronizer behaves if it drops sync after
lock. If non-zero, it will skip over this many
blocks of "length" bytes before it again
searches for the pattern. The skipped
blocks are called flywheel frames. Leave
this field as zero for most applications
unless you have some reason to skip
chunks of data after a loss of
synchronization.

sendFlywheels false If true, the Frame Synchronizer will send
on flywheel frames as if they were lock
frames. Usually it discards them.

PnEncoded false If true, the Frame Synchronizer assumes
the frames are encoded with bit transition
density encoding, and it will decode the
frames. (This is also known as PN
randomization.) The PN decoder is
actually a separate RT-STPS node (link
name "pn"), which is embedded in the
Frame Synchronizer setup because it does
not have any additional setup fields.

epoch 19950810000000 | The epoch, sessionStart, and stepSize
(Aug 10, 1995 | fields configure the clock that the RT-
00:00:00) STPS uses to create frame annotation.
This may be important to you if you are
writing annotation with each packet, frame,
or unit, or if you are creating EOS PDS
files through the "sorcerer" node. The
epoch sets the start time from which all
times are measured. Its format is a string
of the form: "YYYYMMDDhhmmss."

RT-STPS Version 4.1 Page A-5 November 2007

Field Default Description

sessionStart The current wall | This will be the time of the first data unit.
clock time. By default, RT-STPS sets the session start
time to the computer’s current time. By
changing session start, you can have the
session appear to run at a different date
and time. The format for specifying
sessionStart is the same as epoch. Omit
this field to get the default behavior.

stepSize 0 Normally, the time difference between
frames will be real time, after adjusting for
epoch and the session start time. If you
set this field to a positive value, then the
annotation timestamps of successive
frames will differ by this step size (in
milliseconds), and the wall clock is
ignored. For example, if you set stepSize
to 100, then each frame's time will differ
from the preceding one by 100
milliseconds. Warning: The frame
synchronizer will not adjust the time to
account for sync dropouts, so do not rely
on the step size to detect lost frames. It
will adjust for flywheel frames, dropped or
not, however.

RT-STPS Version 4.1 Page A-6 November 2007

The CRC Decoder Node

The element name and link label is "crc". Only one CRC Decoder node may appear in
a configuration. This node checks frames for CRC errors and may discard frames if it
detects errors. The frames must have 16-bit CRC parity. Otherwise, either omit this
node’s setup, or bypass it in the links setup. Usually you will not change CRC fields.

Field Default | Description

includeSyncPattern | false When true, the CRC Decoder will include the
synchronization pattern in the CRC calculation.
This is an atypical setup.

discardBadFrames | true After the decoder -calculates CRC and
compares it against the parity in the frame, it
can either discard the frame or pass it on to the
next node. If it passes it on, a field in the quality
annotation will mark it as a frame with a CRC
error. In either case, the CRC error will appear
as a count in the RT-STPS Viewer's display. If
you pass frames with CRC errors, be aware
that subsequent nodes may also encounter
non-fatal processing errors depending on where
in the frame the error occurred. In addition data
units may be routed to incorrect destinations, or
data units may have incorrect science or
engineering data, because of the indeterminate
bit errors in the frame.

offsetToParity 0 This is the byte offset from the frame start to the
first byte of CRC parity, which is two bytes wide.
In general, the CRC parity follows the frame
data but precedes any Reed Solomon parity. [f
set this field to zero, then the RT-STPS
calculates the value. Change it only if you have
a non-standard location for the parity.

startSeed OxFFFF | This is the start value for calculating the CRC
parity. It is usually all ones or all zeroes. If you
encounter CRC errors on every frame and are
certain that the frames do contain CRC pairity,
try setting this field to zero.

RT-STPS Version 4.1 Page A-7 November 2007

The Reed Solomon Decoder Node

The element name and the link name is "reed_Solomon." Only one Reed Solomon
Decoder node may appear in a configuration. This node checks frames for block Reed
Solomon errors, and it can attempt to correct the errors if so configured. It may discard
frames if it detects errors. The frames must have Reed Solomon parity. Otherwise,
either omit this node’s setup, or bypass it in the links setup.

This node does not perform CCSDS VCDU header error detection and correction.

If Reed Solomon parity is present, then the length of frames is preset to certain absolute
values. For interleaves 1 through 5, the standard CCSDS frame lengths are 256, 512,
760, 1024, and 1264 respectively.

In typical RT-STPS processing, over 90% of the CPU time is spent doing Reed
Solomon detection and correction. If you are having performance problems in a real-
time environment, try turning off block correction.

Field Default | Description

interleave 4 This field’s value must match vyour
spacecraft's Reed Solomon interleave value.
Only values between 1 and 5 inclusive are
allowed.

doBlockCorrection true If true, the RS Decoder will attempt to
correct any frame errors. It will then mark
the frame’s quality annotation as corrected if
it corrected the frame, or as uncorrectable if
it could not fix the errors or if this field was
set to false.

discardUncorrectables | true If true, the RS Decoder will discard any
frame that it cannot correct, or any frame
that has an error and doBlockCorrection was
turned off. As with passing on frames with
CRC errors, passing on frames with RS
errors will almost certainly cause errors in
subsequent nodes as well as incorrect
routing or corrupted science or engineering
data.

useStandardCCSDS true If true, the RS Decoder will be configured to
use a standard CCSDS setup, which
includes the virtualFill and dual fields as well
as several hidden fields. You should never
set this to false unless you have very good

reasons.
virtualFill -- The number of virtual fill bytes in each
frame.
dual true Dual mode or non-dual mode.

RT-STPS Version 4.1 Page A-8 November 2007

Spacecrafts

The element name is "spacecrafts". Only one spacecrafts element may appear in a
configuration. This setup is not a node, but instead it is a list of spacecraft, and it is only
required when you plan to do CCSDS processing. The spacecrafts element contains
one or more spacecraft elements. Each spacecraft element defines information about a
different spacecraft. The table describes the fields in a spacecraft element; the
spacecrafts element has no fields.

Field Default | Description

label None The label is a unique name for this
element, and other nodes will refer to this
element by the label. There is no
default. You must provide a label that is
unique to entire configuration. Case is
significant. Usually you will use the
spacecraft name.

id None This is the spacecraft ID, a number. You
must provide this field. There is no
default.

insertZoneLength 0 Some CCSDS setups will have an Insert

Zone embedded in every CADU. You
must provide the zone length in bytes
even if you do not plan to process it. The
default is zero bytes, no Insert Zone
present.

headerErrorControlPresent | false If true, then each CADU VCDU header
has special parity included in the CADU.
If the error control field is present, you
must set this field to true even if you do
not plan to detect or correct VCDU
header errors.

doHeaderDecode false This option is not currently implemented.
If true, the RT-STPS would detect and
correct errors in the CADU VCDU
header. Header error control information
and parity must be present if this field is
true.

RT-STPS Version 4.1 Page A-9 November 2007

The Terra Decoder Node

The element name is "terra_decoder". The Terra Decoder is a special PN decoder for
the Terra spacecraft that decodes a special non-standard PN encoding. Omit it for any
other spacecraft. The link name is its label. It has no arguments other than a required
unique label field. The usual way to specify it is:

<terra_decoder label="TerraDecoder" />.

RT-STPS Version 4.1 Page A-10 November 2007

The CADU Service Node

The element name and link label is "cadu_service". Only one CADU Service node may
appear in a configuration. It is the entry node for all CCSDS processing. The node
accepts frames and interprets them as CCSDS CADUs. It then routes the frames
based upon virtual channel and spacecraft numbers to different CCSDS service nodes.
The CADU Service node has no configuration for itself, but it does contain a list of one
or more mappings of spacecraft ID and virtual channel ID pairs to CCSDS service node
labels. This is one of two nodes where links are not defined under the links element.
The element name for a member of its map list is "svlink," and the following table
describes "svlink" fields. Note that multiple (spid, vcid) pairs may map to the same
target, and one (spid, vcid) pair may map to multiple targets. CADUs with unmapped
(spid, vcid) pairs are counted and discarded. Typically, you will map pairs to elements
in the "ccsds_services" list, but this is not required. For example, you could map an
"svlink" to an output channel.

Field Default | Description

spid None A spacecraft ID, a number, which will be found inside a
CADU. You must provide this field.
veid None A virtual channel ID, a number, which will be found inside a

CADU. You must provide this field.

label None The label of a target RT-STPS node that expects CADUs or
frames. All CADUs with matching spid and vcid will be sent
to this node. You must provide this field.

The CCSDS Services Element

The element name is "ccsds_services". This is not an RT-STPS node, but instead it is
a list of CCSDS service nodes. There are three different elements that may be in the
list: vcdu, bitstream, and path. However, there may be zero or more elements of each
type in the list. They may be arranged in any order. Typically, you will map the
"cadu_service" node to these service nodes. The next three sections define the
settings for each of the three service nodes.

RT-STPS Version 4.1 Page A-11 November 2007

The VCDU Service Node

The element name is "vcdu". There may be more than one VCDU node. Each one
must have a unique label. The VCDU node removes the VCDU from a CADU and
sends it on to a node that accepts units. It can also send CVCDUs, which are VCDUs
with Reed Solomon parity still attached. One VCDU node usually processes VCDUs for
one virtual channel.

Field Default | Description

label None The label uniquely identifies this node, and it must be
different from any other node label in the
configuration. The name typically incorporates the
virtual channel number. You must provide a label.

spacecraft None A reference to a spacecraft label, which you defined
in the spacecrafts list. There is no default; you must
provide a spacecraft label.

discardRsParity | false If true, the VCDU node will discard Reed Solomon
parity from each VCDU before forwarding it. The
node gets the parity length from the Reed Solomon
node, so you must configure the Reed Solomon
decoder node to use this option. The Reed Solomon
element must be in the configuration file, but it need
not be a linked element.

RT-STPS Version 4.1 Page A-12 November 2007

The Bitstream Service Node

The element name is "bitstream". There may be more than one Bitstream node. Each
one must have a unique label. The Bitstream node removes the BPDU from a CADU
and sends it on to a node that accepts units. One Bitstream node usually processes
BPDUs for one virtual channel. It does not merge BPDUs.

This node accounts for Reed Solomon and CRC parity by searching for the existence of
those decoder nodes, even if they are not linked into the pipeline. If your CADUs do not
have Reed Solomon parity, make sure you remove the Reed Solomon element from
your setup. Merely bypassing it is insufficient. Otherwise, your BPDUs will be
truncated. The same is true for CRC parity; remove the element definition if CRC parity
is not present.

Field Default Description

label None The label uniquely identifies this node, and it
must be different from any other node label in the
configuration. The name typically incorporates
the virtual channel number. You must provide a
label.

spacecraft None A reference to a spacecraft label, which you
defined in the spacecrafts list. There is no
default; you must provide a spacecraft label.

OCFpresent false If true, the node expects that every CADU will
contain a 32-bit Operational Control Field (OCF).
The OCF (also known as the Command Link
Control Word or CLCW) is echo information from
the forward command link. The Bitstream node
uses this flag to compute the BPDU length.
Incorrectly setting this field will cause BPDUs to
be short or long by four bytes.

crcParityPresent | false The Bitstream node uses this flag to compute the
BPDU length. If true, it will subtract two bytes
from the BPDU length. If false, it will look for the
CRC Decoder node and flip this flag to true if it
finds it, and then it will subtract two bytes.
Therefore, if you leave this field as false, the node
will automatically detect for CRC parity presence.
Otherwise, if true, it will assume CRC parity is
present regardless of whether or not the CRC
Decoder node is available.

RT-STPS Version 4.1 Page A-13 November 2007

The Path Service Node

The element name is "path". There may be more than one Path node. Each one must
have a unique label. The Path node performs packet reassembly on a CADU’s data
zone and sends the packets on to a node that accepts packets. One Path node usually
processes CADUs from one virtual channel.

This node accounts for Reed Solomon and CRC parity by searching for the existence of
those decoder nodes, even if they are not linked into the pipeline. If your CADUs do not
have Reed Solomon parity, make sure you remove the Reed Solomon element from
your setup. Merely bypassing it is insufficient. Otherwise, your packets may be
truncated, and the node will report numerous dropouts and sequence errors. The same
is true for CRC parity; remove the element definition if CRC parity is not present.

The Path Service Node sorts packets by their application IDs, and it can send them to
more than one packet processing node based on the sorting. The node contains a list
of one or more mappings of application IDs to packet processing node labels. This is
one of two nodes where links are not defined under the links element. The element
name for a member of its map list is "pklink," and the table that describes "pklink" fields
follows the Path Service Node table. Note that more than one application ID may map
to the same target, and one application ID may map to multiple targets. Packets with
unmapped application IDs are counted and discarded. Typically, you will map
application IDs to elements in the "packets" list, but this is not required. For example,
you could map a "pklink" to a packet output channel.

Field Default Description

Label None The label uniquely identifies this node,
and it must be different from any other
node label in the setup. The name
typically incorporates the virtual channel
number. You must provide a label.

Spacecraft None A reference to a spacecraft label, which
you defined in the spacecrafts list. There
is no default; you must provide a
spacecraft label.

RT-STPS Version 4.1 Page A-14 November 2007

Field Default Description

maxRationalPacketSize | 8192 This is the maximum rational packet size
in bytes. If a packet size exceeds this
value, the Path Service assumes that
either the data are not really packet data
or it is hopelessly lost in the current
frame. If the packet length fails this test,
then the Path Service stops any further
processing for the current frame and
resets itself to start looking for a new
packet in the next frame. It discards the
failed packet. Normally if you discarded
CADUs with bad parity, then packets with
bad lengths should rarely happen. Of
course, make sure this field is larger than
your packet size.

Fill 0xC9 When the Path Service is unable to fill a
packet in its entirety, it will fill the
remainder by repeatedly appending this
fill byte. (However, it will discard any
packet that does not have a packet
header and at least one byte of real data.)
It marks the packet annotation for packets
with fill data.

OCFpresent false If true, the node expects that every CADU
will contain a 32-bit Operational Control
Field (OCF). The OCF (also known as
the Command Link Control Word or
CLCW) is echo information from the
forward command link. The Path node
uses this flag to compute the data zone
length. Incorrectly setting this field will
cause short packets and sequence errors
because it will include OCF data in the
data zone.

RT-STPS Version 4.1 Page A-15 November 2007

Field Default Description

crcParityPresent false The Path node uses this flag to compute
the data zone length. If true, it will
subtract two bytes from the data zone
length. If false, it will look for the CRC
Decoder node and flip this flag to true if it
finds it, and then it will subtract two bytes.
Therefore, if you leave this field as false,
the node will automatically check for CRC
parity presence. Otherwise, if true, it will
assume CRC parity is present regardless
of whether or not the CRC Decoder node
is available.

discardPacketsWithFill false If true, the node will discard short packets
to which it added fill data. If true, it will
send them on, but it will also mark them in
the packet annotation.

discardldlePackets true If true, the node will discard idle packets.
Idle packets are fill packets that usually
contain no useful data. You usually want
to discard idle packets unless there is
other information in them that you need,
such as in the secondary header. If the
node does send them on, it marks them
as idle in the packet annotation.

This is the "pklink" element. One or more of these elements may be in the Path Service
"packet" list. Each one maps an application ID to a label, which corresponds to a target
node that accepts packets.

Field Default | Description

appid None The application ID. You must provide a value.

label None The label of a node that accepts packets. You must provide
a label.

The Packets Element

The "packets" element is not a node but is a container for a list of one or more "packet"
elements.

There may be more than one Packet node. Each one must have a unique label. The
Packet node usually handles packets for one application ID. Its primary functions are to
verify that each packet has an acceptable size and to look for sequence errors, which
indicate a loss of one or more packets.

RT-STPS Version 4.1 Page A-16 November 2007

Field Default Description

label None The label uniquely identifies this
node, and it must be different from
any other node label in the setup.
The name typically incorporates the
application ID. You must provide a
label.

appid None An application ID associated with
this node. This field is optional and
has no effect on processing. It is
here simply for documentation.

minSize 15 The minimum packet size that this
node accepts. If it detects a packet
with a length that is not within
minSize and maxSize inclusive, it
will mark the packet’s annotation,
and it may delete the packet if so
configured.

maxSize 8192 The maximum packet size that this
node accepts. If you want this node
to only pass packets of one size, set
maxSize and minSize to the same
value.

discardWrongLengthPackets | true If true, the node discards packets
with sizes that are not within
minSize and maxSize. Otherwise, it
marks the packet annotation and
sends them on to the next node.

checkSequenceCounter true If true, the node checks the packet
sequence counters for packet gaps.
It reports the number of gaps and
cumulative count of missing packets
in its status. It also marks packet
annotation for packets that are near

gaps.

RT-STPS Version 4.1 Page A-17 November 2007

Output Channel Nodes

Output Channel nodes write data units to output devices. They do not send data units
to other nodes. Currently you may configure output to TCP/IP sockets, files, and null
devices. Files may be RT-STPS custom format files or the "Sorcerer" node, which is a
special node that creates EOS PDS and EDS file sets.

The "output_channels" element is a container for a list of output channel nodes. You
may have any number of output channel nodes in a configuration. One output node
may handle data units from multiple node sources.

Most output channel nodes will accept only one data unit type: packets, frames, or
units.

The "null" channel simply discards data. It can accept any data type. Its only field is its
label, which must be unique.

The RT-STPS Output Channel Node

The RT-STPS format output node can be configured to handle packets, frames, or
units, but not more than one type simultaneously. This node can then be wired to a
socket or a file. Finally, you can configure it to write non-annotated data units, data
units with appended annotation, or data units with annotation preceding each data unit.
The element name defines the device. Use "file" to write data units to a file. Use
"socket" to write data units to a TCP/IP socket.

RT-STPS Version 4.1 Page A-18 November 2007

The File Output Channel Node
The element name is "file," and there may be more than one element.

Field Default | Description

Label None The label uniquely identifies this node, and
it must be different from any other node
label in the setup. You must provide a
label.

UnitType None UNIT, PACKET, or FRAME. This field
describes the type of data unit this node will
accept. Case is significant. You must
provide a value.

annotation None NONE, BEFORE, or AFTER. This field
determines if annotation is to be written
with each data unit and where it should go.
Frames and units get frame annotation.
Packets get packet annotation followed by
frame annotation. NONE means the data
units are written without annotation. Use
BEFORE to write the annotation before
each data unit. Use AFTER to append the
annotation.

Directory -- The output file directory. This field has no
meaning for socket elements. If you omit
this field, the node will create files in the
default data directory, which is usually
"data". The default directory is defined as
an argument in the script that starts the
server. If you choose to put your files in a
different directory, then it is best to create a
subdirectory of "data" and put them there.
If you attempt to create files in a different
directory tree, file creation will probably fail.
The RT-STPS server has security
restrictions about where users may create
files. If you wish to write files elsewhere,
you will need to edit the file rt-stps.policy to
unlock your directory before you start the
server.

Filename -- The name of the file that this node creates.
If you set autoGenerateFilename to true,
then omit this field.

UserLabel -- This is an optional label that the node
inserts into the file name when you set
autoGenerateFilename to true.

RT-STPS Version 4.1 Page A-19 November 2007

Field Default | Description

autoGenerateFilename | true If true, the node generates a unique
filename for you that should not overwrite
an existing RT-STPS file. The file name
will have the form "t"+ "p or f or g" +
"yyyyDDDHHmmss"+ "userLabel" + ".dat".
The "t" stands for "telemetry." It then
inserts "p", "f", or "g" for "packets",
"frames", or "general" units. It finally adds
the date and your user label.

The Socket Output Channel Node

The element name is "socket," and there may be more than one element. To use
sockets, there must be a client at the target computer waiting at a server socket to
establish a connection. If there is no server, then trying to load a configuration with
socket output will fail immediately.

A socket connection sending data units to a server can be a considerable bottleneck for
the RT-STPS. The RT-STPS does not use threads to write to sockets, so a slow or
sluggish target will affect performance and could even stop data processing. If this
problem occurs, consider using the DRL rate buffering program. This is a separate
program that lies between the RT-STPS and the target. If the target read rate is slow,
the rate buffering program will spool data to a temporary disk file. See the tools section
for more information.

Field Default Description

Label None The label uniquely identifies this node, and it must
be different from any other node label in the
configuration. You must provide a label.

UnitType None UNIT, PACKET, or FRAME. This field describes
the type of data unit accepted by this node. You
must provide a value.

Annotation None NONE, BEFORE, or AFTER. This field determines
if annotation is to be written with each data unit and
where it should go. Frames and units get frame
annotation. Packets get packet annotation
followed by frame annotation. NONE means the
data units are written without annotation. BEFORE
means the annotation is written before each data
unit. AFTER means annotation is appended.

BufferSize 8192 The node configures the output socket to use this
buffer size. Use of this value depends on the
Operating System (There is no indication if this
value is used). If you are trying to improve your
network performance, experiment with this number.

RT-STPS Version 4.1 Page A-20 November 2007

Field Default Description

Host None The host name or |IP address of the target
computer. You must provide this field.

Port None The port number of the target computer. The RT-

STPS will connect to this port.

RT-STPS Version 4.1

Page A-21 November 2007

The Sorcerer Node

The element name is "sorcerer," and there may be more than one element in a
configuration. This output node creates an EDOS PDS or EDS file set. A file set
consists of a Construction Record file, which is the equivalent of a shipping letter, and
one or more data files. A data file contains packets without annotation for up to three
application IDs. This node is more complicated than most because it contains sub-
elements. You may wish to consult an EOS Interface Control Document to understand
the significance of some of these fields.

Field Default | Description

Label None The label uniquely identifies this node,
and it must be different from any other
node label in the setup. You must
provide a label.

major 0 The major version number. This value is
inserted into the construction record and
has no effect on processing.

minor 0 The minor version number. This value is
inserted into the construction record and
has no effect on processing.

spid 42 The spacecraft ID. This value is inserted
into the construction record and has no
effect on processing.

path -- The output file Directory. If you omit this
field, the node will create files in the
default data directory, which is usually
"data". The default directory is defined
as an argument in the script that starts
the server. If you choose to put your files
in a different directory, then it is best if
you create a subdirectory of "data" and
put them there. If you attempt to create
files in a different directory tree, file
creation will probably fail. The RT-STPS
server has security restrictions about
where users may create files. If you wish
to write files elsewhere, you will need to
edit the file rt-stps.policy to unlock your
directory before you start the server.

datasetCounter 0 A number that is embedded in the
construction record and the file name.

RT-STPS Version 4.1 Page A-22 November 2007

Field Default | Description

create -- The creation date for the output files,
which is inserted into the construction
record. If you omit this field, Sorcerer
uses the current date and time. If you
provide it, Sorcerer expects this format:
"yyDDDHHmMmss".

KBperFile 0 Kilobytes per file. If you set this to zero,
Sorcerer will create a construction record
file and a data file that contains all
packets from the session. If you set this
field to a positive number, Sorcerer will
split the data file into a set of data files,
each one approximately the size you
specify. Each file name will have a
sequence number embedded in it. Note
that the file name field has room for only
99 data files. If you set KbperFile so
small that Sorcerer tries to create more,
you will get unexpected and unpleasant
results.

test false A flag embedded in the construction
record to indicate that the PDS contains
test data instead of real data.

type PDS This may be "PDS" or "EDS" file. It
affects how Sorcerer names the output
files. It does not affect processing
except when QuicklookEDS is set to
"true”.

QuicklookEDS false This field is ignored unless the type is
"EDS". When true and type is "EDS,"
Sorcerer only writes packets that have
the quicklook flag enabled in their
secondary header. Do not turn this flag
on for non-Terra application IDs that do
not use the Terra secondary header

format.

discardBadLengthPackets | True If true, Sorcerer will discard packets with
an incorrect length. Otherwise, it will
write them.

The Application ID Sub-Element

The element name is "appid". Each "appid" sets up one application ID. There must be
at least one "appid" element, but there may be no more than three. Each "appid" may
also contain a list of valid packet lengths for that application ID. You can either specify
a range of valid lengths, or you can list the lengths individually.

RT-STPS Version 4.1 Page A-23 November 2007

Field Default Description

id None Specifies the application ID number. This field is
required.
vcid None The virtual channel number from which this

application ID came. An application ID may come
from a maximum of two virtual channels. You
specify the second one in vcid2. This field is

required.

vcid2 None A second virtual channel number. Omit this field if
there is no second virtual channel for this application
ID.

spid 42 The spacecraft ID. Use 154 for Aqua.

CUCtime false This field determines the expected packet secondary

header format. If you do not set it correctly, then the
time fields in the construction record will have an
incorrect format. Set this to false for all Terra
application IDs. For Aqua, you must consult the
Interface Control Document. Some applications IDs
use a nine byte secondary header (all Terra) in which
the time field is in CCSDS Day Segmented format.

Stepsize 1 The packet sequence number step size. You should
not change this number. Sorcerer uses it to
determine the gap size for missing packets.

minLength -- The minimum packet length. It must be at least 15
and not bigger than maxLength. There are two ways
you can configure packet lengths. Either set
minLength and maxLength, or provide a list of
"packetLength" elements, one for each length. If you
provide a list, then Sorcerer ignores minLength and
maxLength. However, you must use one of the
methods to configure packet lengths.

maxLength | -- The maximum packet length.

The Packet Length Sub-Element

The element name is "packetLength". Each statement defines a valid packet length for
an application ID in this PDS. Some application IDs may have more than one packet
length; you list them here, one per statement.

Field Default Description
length None A packet length. When you supply a "packetLength,"
you must provide a length value.

RT-STPS Version 4.1 Page A-24 November 2007

Links

The "links" element is not a node, but it is a list of data links between nodes. It defines
the data flow path through the nodes. Each "link" element defines a "from" and "to"
field. You must define a links path through your nodes. However, you must be careful
to only link nodes that convey the proper data type. For example, if you link a node that
sends frames to another node that expects packets, the configuration will fail.

Field Default Description

from None The source node from which data units are sent. This
is an element label and is required.

to None The destination node to which data units are sent. This
is an element label and is required.

The node name used in the link is the node’s label. Some nodes are singletons, and
they have predefined labels. Those are:

Node Label

Frame Synchronizer frame_sync
PN Decoder pn

CRC Decoder cre

Reed Solomon Decoder reed_solomon
Frame Status frame_status
CADU Service cadu_service

The links list does not define all links. The ones in the list are unconditional paths.
There is no filtering or sorting. The CADU Service node and the Path nodes also define
links, but these links are conditional ones, subject to sorting based on virtual channel,
spacecraft, and application ID. Unfortunately, you must deal with the links in all places.
Within the links element, you usually must define the singletons down to CADU Service
and then all links to output channels.

For your convenience, here is the standard links path from the frame synchronizer to
CADU Service:

<link from="frame_sync" to="pn" />

<link from="pn" to="crc" />

<link from="crc" to="reed_solomon" />

<link from="reed_solomon" to="frame_status" />

<link from="frame_status" to="cadu_service" />

Modify this links path as needed. For example, if do not have CRC decoding, then
remove the CRC lines and substitute: link from="pn" to="reed_Solomon." You then
usually must add output channel links to the list as in this example:

<link from="vcdu18" to="file1" />

<link from="bitstream30" to="file2" />

<link from="a256" to="file3" />

RT-STPS Version 4.1 Page A-25 November 2007

Appendix B
RT-STPS Server Configuration

The RT-STPS Server is configured using command line arguments and system property
definitions. You may pass one argument (the server name) when invoking the server.
The full Server name then becomes "RtStpsServices." + name. The default full Server
name is "RtStpsServices.A" if a name is not specified.

The server understands the following system properties. You set them when using the
-D attribute (e.g. "-Dport=4935"). If not set, default values will be used as described.

a) -Dconfig=xmlConfigFileName. A configuration file to be used until overridden by
a loaded file. The default name is "default.xml".

b) -Dport=4935. The port number that the Server reads for telemetry data. The
default port is 4935.

c) -DbufferSizeKb=8. The amount of data to accumulate before processing. The
default is 8 kb.

d) -Dsetup=configurationDirectory. The directory where local configuration files are
located. If provided, all files must be within the directory tree. The default is
"config".

e) -Dlog.stdout. If specified, log messages are written to the standard output.
f) -Dlog.file=<file>. If specified, log messages are written to <file>.

g) -Dlog.server=<host:port:tmpDir>. If specified, log messages are sent to the
NSLS server at host:port (e.g., localhost:3500) and to the temporary directory
tmpDir when the NISGS Status/Event Logging System (NSLS) server is
unavailable.

If none of the "-Dlog.*™ properties are specified, log messages are written to the
standard output and a file named "rt-stps.log" by default.

These arguments and system properties are set in the "server.sh" (Linux) or "server.bat"
(Windows) file, or in the configuration file for the JSW if the RT-STPS Server is being
run using that method. Additional system properties may also be present but should not
be modified.

Automatic Setup

The Server automatically loads the last-loaded setup file if it unexpectedly receives data
on port 4935 and it has yet to be configured. (You can test this by having sender
resend terracotta.dat again to the Server.) If you expect to use only one setup, you can
use this feature to have the Server run in an unattended mode. When the Server first

RT-STPS Version 4.1 Page B-1 November 2007

starts, it uses "default.xml" as its default setup file, which does not exist. You can set
up a different default by editing "./bin/server.sh" (Linux) or ".\bin\server.bat" (Windows)
and changing "default.xml" to something else, or adding the "config" option. Remember
though, that if you use the viewer to load a different setup, then the new setup becomes
the new default. You should add (or edit) the following option to the server command
line. It must appear before "gov.nasa.gsfc.drl.rtstps.server. TcpServer."

-Dconfig=yourSetupFileName
The Server will look for the file in its "config" subdirectory.

Other Installation Issues

The Server has a name, and the default name is "A". You can change its name by
appending it to the end of the command line in the "./bin/server.sh" (Linux) or
"\bin\server.bat" (Windows) file. The RT-STPS Server will handle only one input line;
you must run a second server to handle a second channel. To run a second server,
create a second "./bin/server.sh" (Linux) or ".\bin\server.bat" (Windows), edit it, and
change the input port number to something other than 4935. Finally, give this server a
different name, "B" for example.

The Viewer will only talk to server "A" by default. You must run a second viewer to talk
to a second server. Copy and edit "./bin/viewer.sh" (Linux) or ".\bin\viewer.bat"
(Windows) and add the name to the end of the command line. Notice by default that the
Viewer talks to the Server on the local host. You can change "localhost" to a different
name, and then you do not have to run the Viewer on the same computer as the Server.
The Viewer first looks at the "configDir" parameter in the command line for the names of
configuration files that it sends to the Server.

NOTE: Over 90% of the CPU time is used to do Reed Solomon detection and
correction. If you are doing real-time data processing, you can bypass Reed Solomon
correction to avoid overruns. If you configure the Server to write to a socket, note that a
slow receiver will affect the Server and will cause overruns in a real-time scenario. A
socket interface exists to the Server that will allow you to send text commands (load,
go) to the Server. The other "sh" (Linux) or "bat" (Windows) files in the "bin" directory
allow you to control the Server from the command line. For example, "./bin/load.sh"
(Linux) or "\bin\load.bat" (Windows) loads and enables the server.

Setup

The "config" subdirectory contains sample setup files. An RT-STPS setup file is in XML,
and you can see the template for all fields in the "rt-stps.dtd" file. These setup files are
complex, so you may want to copy and change an existing setup file. If you examine a
sample setup file such as "terracotta.xml" with a text editor, note that almost every
element corresponds to an RT-STPS node. The RT-STPS is a collection of data linked
processing nodes. [Note however, that the Pseudonoise (PN) decoder node is
embedded in the Frame Sync (FS) setup.] Do not change the node order in the file.

RT-STPS Version 4.1 Page B-2 November 2007

The "links" element defines the data paths through the nodes. The first node is always
the "frame_sync" node. The "links" paths are all unconditional branches. Some specific
nodes ("ccsds_services" and "path") have conditional branches. For example,
"ccsds_services" routes CADUs to target nodes based on spacecraft ID and virtual
channel ID, and those links are found in the "ccsds_services" element.

Every node supports links to multiple nodes. For example, you could link the
"frame_sync" node to "reed_Solomon" and to an output node, and the "frame_sync"
node would send frames to both targets. This multi-linking also works for the
"ccsds_services" and "path" special link definitions. If you examine "rt-stps.dtd", you
may find additional fields with defaults that are not in the sample setup files. You may
delete most element definitions from a setup file except for the "frame_sync" and "links"
elements, provided that you do not link to or from them. The "terra_decoder" node
handles the special, non-compliant PN encoding found in certain Terra virtual channels.
The "reed_Solomon" node does not currently do CCSDS header correction and those
arguments do nothing. Block detection and correction do work.

These sample XML files and others are in the "config" subdirectory:

a) default.xml. Default configuration loaded by RT-STPS if a configuration file is not
otherwise specified.

b) aqua.xml. Reads Aqua Spacecraft Telemetry from socket 4935 and writes PDS
and CSR data to files and a port for each of the major instruments aboard the
spacecraft.

c) terra.xml. Reads Aqua Spacecraft Telemetry from socket 4935 and writes PDS
and CSR metadata to files and a port for the MODIS instrument.

d) terracotta.xml. Used to read the terracotta.dat when testing the RT-STPS
installation.

e) This configuration creates Spacecraft ID 42 VCID 42 MODIS APPID 64 packets,
and is similar to terra.xml but does not send data to a port. See the "Program
Operation" section.

f) framer.xml. Captures frame data from the Frame Synchronizer and writes these

data directly to a file without any further processing. This configuration is used
for testing and development.

RT-STPS Version 4.1 Page B-3 November 2007

Appendix C
RT-STPS Tools

RT-STPS Command Line Tools

Scripting tools in the rt-stps/bin subdirectory to manage the RT-STPS programs are
described below.

Batch Script

The Batch Script starts the RT-STSPS Batch Processor to read a raw telemetry file
and produce packet, frame, or other files as specified in the configuration file. (See
the "Program Operation" section.) The format is:

Batch.sh path/configurationFile path/outputFile

Server Script
The Server Script starts the RT-STPS Server. (See the "Program Operation"
section.) The format is:

server.sh

Viewer Script
The Viewer Script runs the RT-STPS Viewer. (See the "Program Operation”
section.) The format is:

viewer.sh

Sender Script
The Sender Script runs the graphical user interface to copy input files to a running
RT-STPS Server for processing. The format is:

stop.sh path/localConfigfileName

GetStatus Script
The GetStatus Script retrieves status information from the RT-STPS Server on the
local host. The format is:

getstatus.sh

Load Script
The Load Script loads a local configuration file into the local RT-STPS Server. The
format is:

load.sh path/localConfigfileName

Shutdown Script
The Shutdown Script halts data processing and unloads the current configuration file
on the local RT-STPS. The format is:

Simulcast Version 4.1 Page C-1 November 2007

Shutdown.sh

Stop Script
The Stop Script terminates the local RT-STPS. The format is:

stop.sh

Version Script
The Version Script prints RT-STPS version information and exits. The format is:

Version.sh

Rat Script
The Rat Script spools RT_STPS Server output to a low data-rate target. The format
is:

Rat.sh inputPort targetHostName outputPort.

Sender

Sender is a graphic utility that sends files as TCP/IP packets to a designated host and
port. You can use it to send data files to the RT-STPS Server on port 4935, or you can
use it to send any kind of data to any application. It does not use any special protocols.

Rat

Rat is a rate-buffering program that can spool data to a slow target. It may be useful
when you load a configuration into the Server that sends data units to a remote target
directly through a TCP/IP socket. A slow target will slow down the server too, and it
may cause overruns in a real-time environment. You can run Rat on the same
computer as the Server, or you can run it at a remote location. Rat.sh requires three
arguments when it is invoked:

Linux: ./bin/rat.sh <inputPort> <targetHost> <targetPort>
Windows: .\bin\rat.sh <inputPort> <targetHost> <targetPort>

Rat acts as a server and listens for socket connections on its input port. When a
connection is made, it then in turn connects to the target on the target port. If no one is
listening, it closes down all the sockets and once again listens for connections on its
input port. It will only service one input connection at a time. Once connected, Rat gets
data from the input port and sends it to the output port. It uses an internal memory
queue to buffer data. If the buffer fills, it then switches to a temporary file as a buffering
device. Even if the input connection closes, it will continue to send buffered data to the
target. When finished, Rat closes the output socket. The target need not be alive and
serving when you start Rat. Rat only attempts to connect after the RT-STPS server has
connected to it. Once you start Rat, you should not have to restart it.

Simulcast Version 4.1 Page C-2 November 2007

Alternate Setup Interface

To configure the RT-STPS server, you either use the Viewer (or the command line load
command, which uses the same interface as the Viewer), or you set up the Server so
that it automatically loads the same setup file on each session. There is, however, an
additional command interface to the Server, but you will need to do some programming
to use it. This interface is useful if you want to integrate the RT-STPS into a larger
system. For example, you would like to connect it to scheduling software.

The RT-STPS server listens for connections on port 5935. (The port number is fixed.)
It expects to receive text string messages on this port. Each message should have the
normal line terminator. Case is significant. The messages are commands to load and
shut down sessions. The available commands are:

a) loadgo <configurationFileName>. The server will load the configuration file from
its configuration directory. It then enables itself for processing. Example:
"loadgo terracotta.xml".

b) shutdown. It stops processing and unloads the current configuration, which
closes all output files.

c) quit (or a null string). This terminates your connection to the Server through port
5935. The Server will close any sockets and will wait for another connection
attempt.

d) rloadgo <configuration>. You can use this form to send a complete configuration
to the Server instead of using a setup that is local to the Server. The
configuration must be one text string following "rloadgo" with no embedded line
terminators. We have not tested this command, so use at your own risk.

The Server does not send responses to any of these commands. The only feedback
you will get is via the Server’s monitor window. It will print the usual load and shutdown
messages. It will also print error messages labeled as "ProxyThread" messages if it
encounters them.

Simulcast Version 4.1 Page C-3 November 2007

